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Abstract

The identification of causal relationships between specific genes and social, behavioral, and
health outcomes is challenging due to environmental confounding from population stratifica-
tion and dynastic genetic effects. Numerous existing methods leverage the random genetic
differences between parents and their children induced by genetic recombination to estimate
effect that are free from environmental confounding. However, such methods require dyadic
genetic data within families (i.e. parent-child pairs and/or sibling pairs) and therefore can
only be applied in relatively small and selected samples. We introduce the phenotype differ-
ences model to compare siblings and estimate the causal effect of genetic predictors using just
a single individual’s genotype. We show that, under plausible assumptions, the phenotype dif-
ferences model provides unbiased and consistent estimates of genetic effects. We then utilize
the phenotype differences model to estimate the effects of 40 polygenic scores on premature
mortality using asymmetrically genotyped sibling pairs in the Wisconsin Longitudinal Study.
We find that twelve polygenic scores related to self-rated health, body mass index, education,
cognition, depression, life satisfaction, smoking behavior, and chronic obstructive pulmonary
disease have a meaningful impact on mortality outcomes. When we combine information
across multiple polygenic scores, the sibling in a pair who inherited more longevity-increasing
DNA from their parents on average lived 9 months longer and was 7 pp (12%) more likely to
survive until age 75 than their brother/sister.
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1 INTRODUCTION

Understanding whether and how variation in individual DNA sequence produces variation in life
outcomes is a key goal of the field of human genomics. Over the last decade, researchers have been
very successful at assembling large genome-wide association study (GWAS) samples of unrelated
individuals to precisely estimate genetic associations for a wide ranch of traits [1]. However,
the identification of causal relationships between specific genes and social, behavioral, and health
outcomes – as well as the mechanisms that such effects operate through – is challenging due to
between-family environmental confounding from population structure [2, 3, 4] and dynastic genetic
effects [5, 6]. Thus, it difficult to know how well current between-family GWAS discoveries and
existing polygenic scores index the causal effects of genes [7].

While naive genetic associations are often environmentally confounded, there exist promising
solutions. In the case of DNA, we have the ultimate ‘natural’ experiment; conditional on their
parents’ genes, a child’s genes are quasi-randomly assigned via genetic recombination. Numerous
strategies have been developed to leverage these quasi-random genetic differences between parents
and their children in order to isolate the causal effects of genes.1 These strategies include both [i]
trio methods, which explicitly conditions on parental genotype, and [ii] sibling methods, which dif-
ference out all shared family-level factors, indirectly conditioning on parental genotype. However,
existing methods require the use of dyadic genetic data within families (i.e., parent-child pairs
and/or sibling pairs) and therefore can only be applied in relatively small and selected samples. A
dearth of such data exists; for instance, though the UK Biobank has roughly 500,000 genotyped in-
dividuals, it has only about 22,000 sibling pairs (and even fewer parent-child pairs) [9]. At present,
researchers are left with estimates of genetic effects that are either precise but environmentally
biased or quite imprecise but environmentally unbiased.

Typical sibling methods, such as the fixed effects model,2 require four pieces of information: the
genotype of both siblings and the phenotype of both siblings. We introduce a new within-family
regression specification to compare siblings and estimate direct genetic effects, which we call the
phenotype differences model. Importantly, the phenotype differences model provides, in expecta-
tion, the same estimates as fixed effects models but instead using just a single individual’s genotype
(as well as the phenotype of that individual and one of their siblings).3 In doing so, the phenotype
differences model can increase statistical power (by increasing the size of analytic samples) and
improve external validity (by increasing the representativeness of samples) in within-family genetic
analyses. While the phenotype differences method can potentially be applied when studying the
effects of non-genetic variables, it is especially well-suited for genetic predictors because of our
strong prior about the correlation of genes within families (ρG1,G2).

We show that, under plausible assumptions, the phenotype differences model provides unbiased
and consistent estimates of genetic effects and that, when genetic effects are small, phenotype dif-
ferences provides the same precision as fixed effects per genotype. Additionally, we show that the
phenotype differences model works for analyses which use individual-level genetic characteristics as
an instrumental variable, also known as Mendelian randomization; conducting Mendelian random-
ization within-families helps reduce biases that result from violations of the exclusion restriction
[12].4 The key mathematical intuition and assumptions of the phenotype differences model can be
found in the Online Methods section, and full derivations are available in the SI.

1While within-family approaches successfully eliminate environmental confounding, recent work suggests that
genetic confounding may still be an issue [8]. That is, such models may suffer from confounding of the relationship
between gij and yij by other correlated genetic variants not encompassed in gij .

2In general, fixed effects and first differences models are slightly different statistical approaches for making for
within-group comparisons. However, in our case, where the number of observations i in each group j is equal to
two (e.g., sibling pairs), the fixed effects and first differences specifications are algebraically identical (see chapter
5.1. of Angrist & Pischke 2009) [10].

3Both fixed effects and phenotypes difference models may suffer from bias in the presence of indirect effects
between siblings [11]. However, little evidence of meaningful siblings effects has been detected, thus far [5].

4The phenotype differences model may be adapted for use in the study of polygenic score-by-environment inter-
actions [13, 14], but such an extension are beyond the scope of the present paper.
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Fixed Effects Model: y1j − y2j = β̂FE(g1j − g2j) + ε̂∗ij

Phenotype Differences Model (General): y1j − y2j = α̂+ β̂PD

(
g1j(1− ρG1,G2)

)
+ ε̂ij

Phenotype Differences Model (Reduced): y1j − y2j = α̂+ β̂PD g1j
2

+ ε̂ij

Where:

yij : Outcome for individual i in family j

gij : Genotype of individual i in family j

α̂: Intercept

ρG1,G2: Population correlation between between g1j and g2j

While the phenotype model differences model is valid for both variant-level (i.e., in GWAS,
where gij is a single SNP) and genome-wide (i.e., when gij is a polygenic score or some other
summary measure) analyses, in our empirical analyses we focus on the genome-wide case. As an
example application, we consider the case of the Wisconsin Longitudinal Study (WLS); the WLS is
a longitudinal survey based on a 1

3 sample of all 1957 Wisconsin high school graduates (N = 10, 317)
and a randomly selected sibling of these graduates [15]. The graduates were originally empanelled
with an in-person questionnaire at age 18; both WLS graduates and the randomly selected siblings
were re-interviewed periodically across the life course. The WLS began collecting genotype data
in the early 2000s, meaning that respondents must have survived and remained empanelled in the
study in order to be included in the genetic sample. Panel A of Figure 1 provides a binned scatter
plot of the likelihood that a WLS respondent is genotyped as a function of their year of death.
As can be seen, no WLS respondents who died before 2006 were genotyped. On the other hand,
among those WLS respondents who survived past 2015, nearly 80% were genotyped.

[Insert Figure 1 Here]

Ignoring WLS siblings pairs where neither sibling is genotyped, we are left with two mutually
exclusive samples of siblings pairs. There there is [i] the One Genotype Sample, where only a
single sibling is genotyped, and [ii] the Two Genotypes Sample, where both siblings are genotyped.
Table 1 displays summary statistics for these two samples of WLS sibling pairs. To date, all
sibling analyses using the WLS data have focused on the 2,088 siblings pairs that comprise the
Two Genotypes Sample. In this paper, we show how the phenotype differences model allows us to
extend our analyses to the additional 3,548 siblings pairs in the One Genotype Sample.

[Insert Table 1 Here]

Importantly, conducting within-family genetic analyses in the WLS using only the Two Geno-
types Sample fundamentally limits the kinds of causal inferences that can be made. Panel B of
Figure 1 displays overlayed histograms of the within-family difference in lifespan for both the One
Genotype Sample (in red) and the Two Genotypes Sample (in blue). In order for a pair to be
included in the Two Genotypes Sample, both siblings must have survived until genotyping; this
mechanically restricts the within-family variation in lifespan, limiting our ability to use siblings
comparisons to understand genetic effects on premature mortality outcomes in this sample. How-
ever, as can be seen, the One Genotype Sample does not face the same limitation. Therefore, the
phenotype differences model also allows us to leverage such variation and to explore genetic effects
on premature mortality.5

5Notably, we are forced to focus on premature mortality due to the fact that our lifespan variable is right-
censored. The most recent time that the WLS collected mortality data from the National Death Index was 2018.
At that time, 79% of the members of the combined sibling sample were still alive.
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2 RESULTS

We begin by fitting a series of regressions to empirically validate the performance of the pheno-
type differences model compared to the fixed effects model using WLS sibling pairs. Figure 2
compares the estimated β coefficients from fixed effects and phenotype differences regressions of
30 phenotypes on their respective polygenic score. All polygenic scores are drawn from the recent
Social Science Genomics Association Consortium Polygenic Index Repository [16]. Though the
repository contains 47 distinct polygenic scores, in the WLS there only exists phenotype data for
a subset of 30 traits. Because both the fixed effects and phenotype differences model leverage only
sibling comparisons, the β coefficients hold a causal interpretation.

[Insert Figure 2 Here]

All three panels of Figure 2 display the same fixed effects estimates, which are derived from
the full Two Genotypes Sample. In Panels A and B, the phenotype differences estimates come
from a procedure using the Two Genotypes Sample in which the genetic (but not phenotypic) data
of a randomly selected sibling in each pair is discarded. Panel A displays the mean phenotype
differences estimate from 1000 iterations of this procedure whereas Panel B displays the estimates
from a single iteration. In Panel C, the phenotype differences estimates are derived from the One
Genotype Sample, meaning the two estimates are fit on entirely non-overlapping samples.

For all of the phenotype differences models, ρG1,G2 is estimated using the Two Genotypes
Sample. While empirical estimates of ρG1,G2 were close to 0.5 for most phenotypes, we found
the greatest evidence of positive assortative mating for the height phenotype (ρG1,G2 = 0.62); this
value is notably higher than the phenotype with the next highest within-family correlation, chronic
obstructive pulmonary disorder (ρG1,G2 = 0.56). We found little evidence for negative assortative
mating, with the lowest empirical estimates of ρG1,G2 being for hayfever (ρG1,G2 = 0.49). A table
with the sibling correlations for all 47 polygenic scores can be found in the SI.

As can be seen, there is a high correspondence (moving from left to right: ρ = 0.99, ρ = 0.87,
and ρ = 0.88) between the fixed effects and phenotype differences estimates, even when fit on
non-overlapping samples. In Panel A, the two estimates are virtually identical; this suggests that
differences between the fixed effects and phenotype differences estimates in Panel B are simply the
result of sampling variance. Importantly, the correspondence between fixed effects and phenotype
differences estimates is very similar across Panel B and Panel C, implying that the key phenotype
differences assumptions are, indeed, largely met in the WLS One Genotypes Sample. To achieve a
single estimate with the greatest precision, the two estimates displayed in Panel C can be pooled
using inverse variance-weighted meta-analysis.

Next, we use the phenotype difference model to estimate the causal effects of 40 polygenic scores
on mortality outcomes. While previous studies have shown that both specific genetic variants
[17, 18] and polygenic scores [19, 20] are associated with mortality outcomes, the extent to which
these associations represent the causal effects of genes versus environmental confounding is largely
unknown. Figure 3 displays the β coefficients of theses polygenic score on lifespan in years (Panel
A) and a dichotomous indicator for surviving to age 75 (Panel B).6 To reduce the extent to which
the regressions fit on noise induced by the right-censoring of the lifespan variable, only sibling pairs
(N=2,191) where at least one of the siblings is deceased are included in the regression sample.7

See the SI for a table describing the analytic sample used in our analysis of premature mortality.

[Insert Figure 3 Here]

In Panel A of Figure 3, 7 polygenic scores have statistically significant effects on lifespan. The
polygenic scores for self-rated health, life satisfaction–family, educational attainment, and cognitive

6These coefficient estimates are pooled via inverse variance-weighted meta-analysis across the One and Two
Genotype Samples using phenotype differences and fixed effects, respectively (though, as can be seen in Figure 1,
much of the identifying outcome variation comes from the phenotype differences estimates on the One Genotype
Sample.)

7Of the 2,191 sibling pairs used in the lifespan analyses, just 1,789 pairs included only siblings who were born
before 1943 (and were therefore able reach age 75 by the time of data collection in 2018). These 1,789 pairs become
the analytic sample for our survival to 75 analyses.
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ability increase lifespan and the polygenic scores for chronic obstructive pulmonary disease and
body mass index decrease lifespan. In Panel B, a similar, although distinct, set of polygenic scores
have statistically significant effects on surviving until age 75. The polygenic scores for self-rated
health, life satisfaction–family, educational attainment, and cognitive ability increase the likelihood
of surviving until age 75 and the polygenic scores for depressive symptoms, loneliness, body mass
index, and smoking initiation decrease the likelihood of surviving until age 75. A figure containing
all of the statistically significant β coefficients from Figure 3 corrected for measurement error using
the procedure described in Becker et al. 2021 [16] can be found in the SI.

In addition, we summarize genetic risk information across traits and create a so-called meta-
polygenic score for each of our two mortality outcomes. Each meta-polygenic score is a weighted
average of the statistically significant polygenic scores. The weights are derived from between-
family ridge regression of these polygenic scores on mortality. A table with the weights used to
compute each meta-polygenic score can be found in the SI.

A 1 SD change in meta-polygenic score caused a 0.93 year and 8.8 pp (16%) increase in lifespan
and the probability of surviving to 75, respectively. In our sample, the mean absolute difference
between sibling pairs for a difference in the meta-polygenic score is approximately 0.8 SD (for two
randomly selected unrelated individuals, the mean absolute difference is approximately 1.1 SD).
This entails that, on average, the sibling who inherited the higher lifespan meta-polygenic score
lived 9 months longer than their brother/sister as a result. Similarly, the sibling who inherited the
higher survive-to-75 meta-polygenic score was, on average, 7 pp (12%) more likely to survive until
the age of 75 than their brother/sister.

3 DISCUSSION

Our results demonstrate that the phenotype differences model is a robust estimator of genetic
effects in the presence of environmental confounding. Crucially, the comparatively less genetic
data required by the phenotype differences model has the potential to increase precision and
generalizability of within-family genomic studies. The potential applications of the phenotype
differences model extend far beyond addressing mortality selection into genotyping in a longitudinal
study, as we have done here. More broadly, our work highlights the value of collecting sibling
phenotype data, even when genotype data is unavailable. Indeed, perhaps the most beneficial
use cases of the phenotype differences model will come through new data collection efforts and/or
creative uses of existing data resources; for instance, in the case of phenotypes that are easily
reported (like height and educational attainment), through [i] surveying unrelated individuals
on the phenotypes of all or a randomly selected sibling; or, when studying rare and sensitive
phenotypes (such as severe mental disorders), through [ii] leveraging population registries and
other administrative data bases. Table 2 describes various applications of the phenotype differences
model in more detail.

[Insert Table 2 Here]

This study’s example application of the phenotype differences model provided a glimpse into
the so-called genetic lottery [21, 22] for premature mortality in mid-century Wisconsin. We find
that twelve polygenic scores related to self-rated health, body mass index, education, cognition,
depression, life satisfaction, smoking behavior, and chronic obstructive pulmonary disease have
meaningful effects on an individual’s premature mortality outcomes. That is, holding the other
circumstances of one’s birth constant, if a person were to have inherited a different DNA sequence
(and, in turn, a different polygenic score), their expected lifespan and probability of surviving
to 75 would have also changed [23]. Nonetheless, the precise pathways through which the genetic
effects observed in this study operate remain largely unknown. While some mistakenly believe that
genetic effects exist strictly within the body, the effects of genes instead often operate through long,
complex causal chains meditated by social and environmental aspects of our world [24].

One polygenic score which stands out in our mortality analyses is the score for self-rated
health, a less-frequently studied phenotype in genomic research. The self-rated health polygenic
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score had the largest in magnitude estimated effect on lifespan and the second largest estimated
effect on survival to age 75 (behind the body mass index polygenic score). After measurement
error correction, a 1 SD increase in the self-rated health polygenic score causally increased lifespan
by 1.4 years and increased the probably of survival to age 75 by 15 pp (26%).8

While self-rated health is a well-known and robust predictor of mortality [25, 26], and common
genetic variants have been shown to explain 13% of the variation in self-rated health [27], we
provide the first evidence that the genetic variants associated with self-rated health themselves
have a causal effect on mortality outcomes. Interestingly, self-rated health does not have a high
genetic correlation with any of the other statistically significant predictors of mortality,9 suggesting
that its effects operate through relatively unique pathways; this is consistent with the observation in
numerous non-genomic studies that self-rated health measures aspects of health relevant to survival
which are not captured by other health indicators[26]. In sum, our results provide evidence for the
idea that individuals are capable of subjectively indexing meaningful information about genetic
influences on their own health, and that genetically-influenced variation in subjective health status,
in turn, shapes individual risk for premature mortality. Future genomic studies may benefit from
considering novel ways to integrate subjective measures of health status.

Broadly, our results show that certain recent between-family genetic discoveries – as summarized
by polygenic scores – have causal effects on premature mortality, an outcome of substantive interest
other than the traits these scores were trained to predict. If, in fact, between-family GWAS
were overwhelmingly capturing environmental confounding from population structure and dynastic
effect, it would be unlikely to see such a result. As genetic indices continue to become increasingly
powerful causal predictors, policymakers may need to increase regulations of the uses of genomic
predictors in order to protect citizens [28] and prevent adverse outcomes in insurance markets [20].

4 ONLINE METHODS

4.1 The Phenotype Differences Model

Mathematical Intuition

If some family-level environment (ej) is associated with both genotype (gij) and phenotype (yij),
any naive estimate of the relationship between genotype and phenotype will be subject to con-
founding. One way to address environmental confounding is the use of the fixed effects model fit on
sibling pairs. The fixed effects model eliminates both the environment-phenotype and environment-
genotype relationships simultaneously by leveraging sibling differences of all regressors:

y1j − y2j = β̂FE(g1j − g2j) + ε̂ij . (1)

Notice that, because the environmental effect, ej , does not vary within-families, it is mechani-
cally uncorrelated with the sibling difference in phenotypes, y1j−y2j . In addition, because genotype
is quasi-randomly assigned within-families, ej is uncorrelated with the sibling difference in phe-
notypes, g1j − g2j in expectation. Thus, regressing y1j − y2j on g1j − g2j allows the fixed effects
model to recover estimates of direct that are free from environmental confounding.

Recall that the family-level environment, ej , must be associated with genotype and phenotype
in order to confound estimates of genetic effects. Thus, the fixed effects model, which breaks
the link between ej and both eij and gij , exceeds the requirements for eliminating environmental
confounding. This fact forms the conceptual basis for the phenotype differences model, which
breaks only the link between environment and phenotype, and thereby requires using genetic

8It is difficult to say how we would expect effect sizes from our premature mortality analytic sample to generalize
to other populations. On one hand, effects on premature mortality may be larger than in the general population,
because we were forced to focus on an analytic sample of siblings pairs that had experienced at least one death by
2018 (and are therefore likely at higher risk). On the other hand, the effects we observe may also be too small, a
result of our right-censored lifespan variable and our focus on premature mortality.

9That is, none, have a genetic correlation over 0.6, the threshold used in Becker et al. 2021 [16]. The top
four genetic correlations with self-rated health are: life satisfaction–finance =0.61, age first birth=0.56, body mass
index=0.54, and physical activity 0.52.

6



information from just a single sibling. As above, while ej is correlated with both y1j and y2j , it
is uncorrelated with y1j − y2j . Thus, even though a correlation between ej and g1j persists, it
does not introduce environmental confounding. However, because the covariance of y1j − y2j and
g1j becomes distorted, we must use the within-family correlation of genetic predictors, ρG1,G2,
to re-inflate our genetic effect estimate. This leaves us with the following phenotype differences
equation:

y1j − y2j = α̂+ β̂PD

(
g1j(1− ρG1,G2)

)
+ ε̂ij . (2)

Section 2.4 of the SI shows a proof of the unbiasedness of the phenotype differences estimator
when two key assumptions hold: quasi-random assignment of genotype within families, an assump-
tion also required by fixed effects, and equal variance of the genetic predictor in the genotyped and
ungenotyped siblings, an assumption unique to phenotype differences. For genetic predictors, in
the absence of assortative mating, ρG1,G2 = 0.5. In this case, one can plug in and use a simplified
version of the phenotype differences equation:

y1j − y2j = α̂+ β̂PD g1j
2

+ ε̂ij (3)

When meaningful assortative mating exists, mother and father genotypes become correlated
with one another and ρG1,G2 6= .5 (under positive assortative mating, ρG1,G2 > .5). In such a case,
an estimate of ρG1,G2 can be derived from a sub-sample of fully genotyped sibling pairs, as we do
in our WLS application.

Assumption of Equal Variance of Genetic Predictor

The key assumption required by the phenotype differences model is that the population variance be
equal for the genotyped sibling’s genetic predictor and the ungenotyped sibling’s genetic predictor.
Let g1j be drawn from the random variable G1 with variance σ2

1 , and let g2j be drawn from the
random variable G2 with variance σ2

2 . Thus, the assumption of phenotype differences is that
σ2
1 = σ2

2 . Because we don’t observe g2j , this assumption is inherently untestable. However, if we
know that we observe the genotype of a random sibling (e.g., random sampling), then G1 are G2
identical random variables and our assumption is trivially met.

When gij is a polygenic score, there is no inherent mean-variance dependence. Thus, average
differences in genetic characteristics will not themselves create a problem. Put differently, the
existence of genetic differences between individuals that linearly increase or decrease likelihood of
being the genotyped (versus ungenotyped) sibling does not distort the variance of G1 (compared
to G2) and therefore will not violate our assumption. However, non-linear and/or non-monotonic
selection into genotyping may impact the variance of G1 (compared to G2) and therefore induce
violations of this assumption.

When gij is the number of major alleles at a single-nucleotide polymorphism (i.e., taking the
value of 0, 1, or 2), such as in GWAS, mean differences likely entail variance differences; therefore,
systematic differences in the allele frequencies across the genotyped and ungenotyped sibling may
induce violatations of the equal variance assumption. When this key assumption is not met,
estimates of the true genetic effect become biased as a function of how extreme the variance
discordance is. In general, we observe that:

E
[
β̂PD

]
= β ·

1− ρG1,G2
√

var(G2)
var(G1)

1− ρG1,G2
(4)

When ρG1,G2 = 0.5, this reduces to:

E
[
β̂PD

]
= β ·

(
2−

√
var(G2)

var(G1)

)
(5)

While we cannot explicitly test the equal variance assumption in our One Genotype Sample
(as we do note observe g2j), we do observe y2j . Thus, we can test for variance differences using
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phenotypic data. See the SI for a table that tests the equal variance assumption (specifically, the
the Brown-Forsythe test [29]10 ) using phenotypic data. We restrict our tests to phenotypes that
are largely continuous, to reduce the presence of mean-variance dependancies (which do not exist
for normally distributed polygenic scores). In general, the magnitude of the phenotypic variance
discordance that we observe is small and insignificant.

Comparative Precision

When the genetic predictor of interest explains only a small portion of the within-family variation in
the outcome variable, fixed effects and phenotype differences yield approximately equally precise
effect estimates per genotype. That is, when the effects of gij are small, fixed effects estimates
will have asymptotically identical standard errors to phenotype differences estimates derived from
the same number genotypes (although, when using phenotype differences, one typically has half
as many genotypes per family). However, as the fraction of within-family outcome variation
explained by gij grows, phenotype differences provides less precise effect estimates than fixed
effects. Specifically, this decrease in precision is governed by the following formula:

p lim
N→∞

var(β̂FE)

var(β̂PD)
=

1− φ
4− φ

(6)

Here, φ is the fraction of within-family variation in the yij that is explained by gij :

φ =
cov(g1j − g2j , y1j − y2j)

var(y1j − y2j)
(7)

The within-R2 of the fixed effects model provides a useful estimate of φ. For currently available
genetic predictors, this reduction in precision as φ increases is, in practice, relatively trivial. For
example, even when gij is the polygenic score for height – the most predictive score available –

φ̂ = 0.16 (estimated using the WLS Two Genotypes Sample). Therefore, the comparative precision

per genotype is 2 ×
√

1−0.16
4−0.16 = 0.86. That is, when fit on the same number of genotypes, fixed

effects estimates of the effect of the height polygenic score on phenotypic height will have standard
errors that are 0.86 the size of the standard errors of phenotype difference estimates. Nonetheless,
the smaller amount of genetic data required by phenotype differences compared to fixed effects
can increase sample sizes available for within-family genetic analyses. See the SI for a figure the
visualizes the relationship between φ and the asymptotic ratio of standard errors of the fixed effects
and phenotype differences models.

Non-Paternity Events

Occasionally, siblings pairs believe themselves to be full biological siblings but are, in actuality,
only half siblings. Because, under random mating, half siblings have a within-family correlation of
genetic predictor of 0.25, sufficient prevalence of non-paternity events can produce ρG1,G2 < 0.5.
In such a case, phenotype differences estimates become biased away from 0. In the WLS Two
Genotypes sample, approximately one-in-fifty sibling pairs who self-report being full biological
siblings are actually half siblings. If the variance of the overall distribution of gij is identical for
full and half siblings, we would expect this frequency of non-paternity events to induce ρ ≈ 0.495.
Such a small departure from ρ = 0.5 will have only a trivial impact on phenotype differences
estimates. Importantly, because misreporting individuals are unaware that they are half siblings,
it is unlikely that there exist meaningful and systemic environmental differences between such half
siblings that are correlated with paternal genotype, so confounding from population stratification
and/or dynastic effects is unlikely.

10For a more thorough discussion of tests of equal variance, see [30].
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4.2 Empirical Application

The Wisconsin Longitudinal Study

The Wisconsin Longitudinal Study (WLS) is a survey based on a 1
3 sample of all 1957 Wisconsin

high school graduates and a randomly-selected sibling of these graduates (Herd, Carr, & Roan,
2014). The graduate respondents were originally empaneled with an in-person questionnaire at
age 18 in 1957, which was followed with data collection at ages 25, 36, 54, 65, and finally 72 in
2012. The WLS includes a wide range of administrative and prospectively collected data from
early life, adolescence, and early adulthood. Genetic samples were assayed from saliva for a sub-
sample of consenting WLS graduates and siblings. Genotyping was performed using the Illumina
HumanOmniExpress 24 BeadChip arrays (Version 1/1.1; Illumina). We restrict our analytic sam-
ple to only individuals of European ancestries, as polygenic score analyses in diverse ancestries are
both methodologically [31] and conceptually [32] fraught.

Polygenic Scores

The polygenic scores used in this study are drawn from version 1.1 of the Social Science Genomics
Association Consortium Polygenic Index Repository [16]. All polygenic scores are standardized
over the full sample of genotyped WLS graduates. We removed 3 polygenic scores – attention
deficit hyperactivity disorder, pollen allergy, and risk tolerance – from both our phenotype analyses
(Figure 2) and mortality (Figure 3) analyses because these scores failed to statistically significantly
predict their phenotype in between-family analyses. We further removed five sex-specific polygenic
scores – age at first menses, age voice deepened, number ever born: men, and number ever born:
women – from our mortality analyses, as the sample size of same-sex sibling pairs is too small to
achieve adequate statistical power. A table describing which polygenic scores are utilized in each
analysis presented in this study can be found in the SI.

Phenotype Variables

We generate phenotypes identically to Becker et al. 2021 [16]; see Supplementary Table 12 of that
paper for a list of the specific WLS survey items used. Though the repository contains 47 distinct
polygenic scores, in the WLS their only exists phenotype data for as subset of 30 traits. When only
a single phenotypic measurement was available for a given trait, we residualized the phenotype
on a second-degree polynomial of age, sex, and their interactions. When multiple measurements
were available, for variables such as depression, we residualized on age, sex, and their interactions
within each wave and that took the average for an individual across waves. For variables like
educational attainment with multiple measurements, we took the maximum value across waves
and then residualized on birth year, sex, and their interactions. All phenotypes are standardized
over the full sample of genotyped WLS graduates.

Mortality Variables

The mortality data used in this study is derived from the National Death Index [33] – importantly,
such data is available for all members of the WLS, regardless of how long they remained empaneled
in the study. Mortality data was last collected by the WLS staff in 2018. We utilize two mortality
variables; the first is lifespan in years, which is calculated as the difference between death date
and birth date (for individuals who are still alive, we use 2018 as their death date). Although this
mortality variable is right-censored, because genotype is quasi-randomly assigned within families,
we would differences in polygenic scores between siblings will not be correlated with differences in
birth date; therefore, genetic effect estimates will not be confounded by birth year as a result of this
censoring. Our second mortality outcome is a dichotomous indicator for survival to age 75; this
threshold was chosen both because of it’s substantive meaning with respect to the phenomenon
of premature mortality and also to maximize statistical power in our sample (e.g., an earlier
dichotomous cutoff would decrease the fraction of deaths, but a later cutoff would exclude more
sibling pairs who were born later and therefore have a restricted potential lifespan). Both variables
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were residualized on sex and second-degree polynomial for age; note, it is useful to residualize
outcomes before implementing phenotype differences regression (rather than including them as
covariates, which may influence the conditional within-family correlation of genetic predictor).
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FIGURES

Mortality Selection into Genotyping

Figure 1: This figure shows the impact of mortality selection on the sample of genotype individuals in the WLS. Panel A displays the fraction of
WLS respondents (graduates and randomly selected siblings) who have valid genotypic data as a function of their year of death, with a vertical line
drawn at 2006. Each marker represents one year and contains, on average, 500 individuals. Panel B displays a histogram showing the within-family
variation in lifespan for the One Genotype Sample (blue bars) and Two Genotypes Sample (red bars). Which sibling is Sibling 1 vs. Sibling 2 is
randomly assigned.
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Comparing Fixed Effects to Phenotype Differences Estimates

Figure 2: This figure compares effects of various polygenic scores on their target phenotype estimated using fixed effects (FE) and phenotype differences
(PD). All panels display the same FE estimates, which are derived from the full Two Genotypes Sample. In Panels A and B, the PD estimates come
from a procedure using the Two Genotypes Sample in which the genetic data of a randomly selected sibling in each pair is discarded; Panel A displays
the mean from 1000 iterations whereas Panel B displays the estimates from a single iteration. Panel C displays PD estimates derived from the One
Genotype Sample (phenotypes with insufficient sample size in this sample are removed). Both polygenic scores and phenotypes are standardized over
the full sample of genotyped WLS graduates. A table containing a list of names and labels of all the phenotypes use in this figure can be found in
the SI.
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Effects of Polygenic Indices on Mortality

Figure 3: This figure displays estimates of the causal effect of 40 polygenic scores on premature
mortality outcomes. Panel A displays effects on lifespan in years, and Panel B displays the effects
on the probability of survival to age 75.
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TABLES

Wisconsin Longitudinal Study Sibling Data

Panel A. Two Genotypes Sample.

Graduate Not Graduate

Mean SD N Mean SD N
Female 0.52 0.50 2088 0.53 0.50 2088
Birth Year 1939.41 0.46 2088 1941.18 6.82 2088
Deceased by 2018 0.12 0.32 2088 0.11 0.32 2088
Deceased by Age 75 0.06 0.24 2088 0.07 0.25 1346
Lifespan 78.52 1.86 2088 76.78 6.62 2088

Panel B. One Genotype Sample.

Genotyped Not Genotyped

Mean SD N Mean SD N

Graduate 0.73 0.44 3548 0.27 0.44 3548
Female 0.51 0.50 3548 0.48 0.50 3548
Birth Year 1939.84 3.49 3548 1941.15 7.25 3548
Deceased by 2018 0.12 0.33 3548 0.41 0.49 3548
Deceased by Age 75 0.07 0.25 3218 0.46 0.50 2686
Lifespan 78.03 3.78 3548 70.54 10.32 3548

Table 1: This table uses data from the Wisconsin Longitudinal Study. Graduates are the original
members of the WLS, who graduated from high school in 1957. Later, a randomly selected sibling
of each graduate was empaneled into the study. The lifespan variable is right-censored, as the last
collection of data from the National Death Index was in 2018.
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This table describes various potential applications of the phenotype differences model.

Potential Application Description

Collecting Sibling
Reported Phenotypes

Imagine researchers decide to expand an existing data repository, like the UK biobank [9], to increase the number
of genotyped pairs of first-degree relatives available for causal genomic analyses. However, many phenotypes,
like height and educational attainment, are easily reported. Rather than empanel, interview, and genotype
multiple members of the same family, it is likely more cost-effective to instead ask the already empaneled
members (or an entirely new sample of unrelated individuals) to provide the phenotypes of all or a randomly
selected sibling. One does not necessarily have to choose between the two strategies – both types of data can be
simultaneously collected and utilized). Importantly, the phenotype differences model provides estimates that
are robust to asymmetric bias and classical measurement error (e.g., reporting a sibling’s height systemically
lower or less accurately than one’s own height), so long as such biases are not meaningfully genetically caused.

Leveraging
Administrative Data

While collecting large genotyped sampled of siblings when studying common and easily measured phenotypes
is a difficult task, it is even more challenging when studying rare and highly-sensitive phenotypes, such as
severe mental disorders. Case-control studies, such as iPSYCH [34], have achieved the near-herculean task of
assembling a sufficient sample size for molecular genetic analyses, but it is currently difficult to integrate such
data sources into a within-family causal framework. However, using the phenotype differences model, the same
administrative data that was used to create iPSYCH could be leveraged to collect the phenotypes of siblings
without the need to contact participants or to obtain consent for the use of additional biological assays. The
use of administrative data is particularly appealing, because utilizing phenotypes of all siblings (rather than
just a single sibling) increases precision of the the phenotype differences model.

Accounting for Sample
Selection

As we have done in this study using the WLS data, the phenotype differences model is useful for addressing
selection into genotyping. In our case, such selection resulted largely from premature mortality, though other
forms of selection into genotyping, such as an individual’s concerns related to privacy or trust in research
institutions, may exist.

Table 2: Three potential applications of the phenotype differences model
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1 SUPPLEMENTARY FIGURES

1.1 Measurement Error-Corrected Effects of Polygenic Scores on Mortality

Figure S1: This figure displays estimates of the causal effect of various polygenic scores on premature mortality outcomes.
Both raw estimates and estimates that are deattenuated for measurement error are shown. Such measurement error in
polygenic scores results from the finite GWAS sample used to estimate the underlying allelic weights. We implemented
measurement error correction following the procedure outlined in Becker et al. 2021. Panel A displays effects on lifespan in
years, and Panel B displays the effects on the probability of survival to age 75.
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1.2 Comparative Precision

Figure S2: This figure displays the comparative precision of the fixed effects and phenotype differences estimators. The left
panel shows the asymptotic ratio of the standard errors of the fixed effects and phenotype differences estimator for a given
number of sibling pairs as a function of φ, the fraction of within-family outcome variation explained by the genetic predictor.
The right panel shows the comparative size of a phenotype differences sample required to match the precision estimates from
a fixed effects sample; for values of φ near zero, phenotype differences requires double the sibling pairs (i.e., the same number
of genotypes) as fixed effects to achieve the equal precision.
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2 SUPPLEMENTARY TABLES

2.1 List of Polygenic Scores

Trait Label Phenotype Mortality Lifespan Survive to 75
Analyses Analyses Meta-PGI Meta-PGI

Adventurousness adv X
Age at First Birth birth X X
Age at First Menses menses X
Age Voice Deepened deep
Attention Deficit Hyperactivity Disorder adhd
Allergy - Cat cat X X
Allergy - Dust dust X X
Allergy - Pollen pollen
Asthma/Eczema/Rhinitis aer X X
Asthma asthma X X
Alcohol Misuse alcoh X X
Body Mass Index bmi X X -.23 -.18
Cannabis Use canna X
Cognitive Empathy cog emp X
Childhood Reading read X
Chronic Obstructive Pulmonary Disease copd X X -.11
Cigarettes per Day cig day X X
Cognitive Performance cog X X .04 .02
Delay Discounting dly disc X
Depressive Symptoms dep X X -.11
Drinks per Week drinks X X
Educational Attainment edu X X .08 .06
Ever Smoker ever smk X X -.24
Extraversion extra X X
Life Satisfaction - Family sat fam X X .22 .12
Life Satisfaction - Finance sat fin X X .14
Life Satisfaction - Friend sat frnd X
Life Satisfaction - Work sat job X X
Hayfever hay X X
Height hgt X X .01
Highest Math high math X
Left Out of Social Activity left out X
Loneliness lonely X X -.12
Migraine migrn X
Morning Person chrono X
Narcissism narci X
Nearsightedness near sgt X
Number Ever Born - Men neb male X
Number Ever Born - Women neb fem X
Neuroticism neuro X X
Openness open X X
Physical Activity phys act X X
Religious Attendance relig X X
Risk Tolerance risk
Self-Rated Health health X X .18 .05
Self-Rated Math Ability self math X
Subjective Well-Being swb X X .10

Table S1: This table provides a list of the 47 polygenic scores derived from the SSGAC repository, as well as which of our
WLS analyses each score was included in. If a phenotype contributed to the meta-polygenic score for a either lifespan or
survival to 75, its weight is also included; the absolute value of meta-polygenic score weights for a given premature mortality
outcome sum to 1.
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2.2 Observed Sibling Correlations for 47 Polygenic Scores

pgi phys act pgi bmi pgi canna pgi cig day pgi edu pgi ever smk

0.512 0.500 0.493 0.459 0.526 0.542
(0.019) (0.019) (0.019) (0.019) (0.019) (0.018)

pgi hgt pgi migrn pgi chrono pgi narci pgi near sgt pgi open

0.620 0.487 0.507 0.504 0.493 0.544
(0.017) (0.019) (0.019) (0.019) (0.019) (0.018)

pgi read pgi adhd pgi adv pgi birth pgi cat pgi dust

0.504 0.540 0.501 0.550 0.494 0.495
(0.019) (0.018) (0.019) (0.018) (0.019) (0.019)

pgi pollen pgi aer pgi asthma pgi alcoh pgi cog emp pgi copd

0.494 0.501 0.502 0.504 0.524 0.564
(0.019) (0.019) (0.019) (0.019) (0.019) (0.018)

pgi cog pgi dly disc pgi dep pgi drinks pgi extra pgi sat job

0.496 0.520 0.523 0.508 0.498 0.531
(0.019) (0.019) (0.019) (0.019) (0.019) (0.019)

pgi sat fin pgi sat fam pgi sat frnd pgi hay pgi high math pgi left out

0.510 0.537 0.531 0.486 0.506 0.535
(0.019) (0.018) (0.019) (0.019) (0.019) (0.019)

pgi lonely pgi menses pgi neb male pgi neb fem pgi neuro pgi relig

0.537 0.534 0.534 0.536 0.509 0.522
(0.018) (0.019) (0.019) (0.018) (0.019) (0.019)

pgi risk pgi health pgi self math pgi swb pgi deep

0.501 0.548 0.507 0.539 0.522
(0.019) (0.018) (0.019) (0.018) (0.019)

N=2088 Sibling Pairs

Table S2: Empirical sibling correlations (ρG1,G2) for 47 polygenic scores from the WLS Two Genotypes Sample. Sibling 1
vs. Sibling 2 are randomly assigned across 1000 repetitions and we take the average correlation and variance (this variance
is then converted to a standard error). Deviations from ρG1,G2 = 0.5 suggest the existence of assortative mating.
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2.3 Testing the Equal Variance Assumption Using Phenotypic Data

Not Genotyped Genotyped Ratio p-value
V ar2 N2 V ar1 N1

V ar 2
V ar 1

Body Mass Index 0.96 1728 1.01 3394 0.95 0.34
Height 1.10 1038 0.87 3279 1.26 0.20
Cognitive Ability 1.10 2881 1.01 3397 1.08 0.088
Years of Schooling 1.13 2432 1.12 3528 1.01 0.44
Extroversion 1.07 1808 0.97 3426 1.11 0.098
Neuroticism 1.06 1804 0.96 3425 1.10 0.046
Openness to Experience 0.98 1804 0.93 3423 1.06 0.30

Table S3: This table displays p-values from a Brown–Forsythe test for equal variance across the genotype and ungenotyped
sibling for 7 approximately continuously distributed phenotypes in the WLS One Genotype Sample.
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2.4 Descriptive Statistics of Sub-Sample Used in Mortality Analyses

Panel A. Individual Characteristics.

No Deaths 1 or 2 Deaths

Mean SD N Mean SD N
Female 0.53 0.50 6890 0.47 0.50 4382
Birth Year 1941.08 5.19 6890 1939.38 5.67 4382
Deceased by 2018 0.00 0.00 6890 0.54 0.50 4382
Survived to Age 75 1.00 0.00 5358 0.58 0.49 3980
Lifespan* 77.42 5.19 6890 72.56 9.69 4382

Panel B. Sibling Pair Characteristics.

No Deaths 1 or 2 Deaths

Mean SD N Mean SD N
|Female1 - Female2| 0.50 0.50 3445 0.50 0.50 2191
|Birth Year1 - Birth Year2| 6.20 4.56 3445 6.52 4.61 2191
|Survived to Age 751 - Survived to Age 752| 0.00 0.00 1913 0.69 0.46 1789
|Lifespan1 - Lifespan2| 6.20 4.56 3445 11.92 9.79 2191
Two Genotype Sample 0.47 0.50 3445 0.21 0.41 2191
Non-Missing Survived to Age 751 & Survived to Age 752 0.56 0.50 3445 0.82 0.39 2191

Table S4: This table uses data from the Wisconsin Longitudinal Study. Sibling pairs with 1 or 2 deaths by 2018 comprise
the analytic sample for our premature mortality analyses.
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3 DERIVATIONS

3.1 Random Variables & Causal Model

In our data, we observe individuals i nested in families j. In particular, we observe one pair of siblings, i = 1 and i = 2, in
each family j from j = 1, ..., N . In the notation of the fixed effects portion of the panel data literature, this entails T = 2.
We call our outcome of interest yij .

Let gij be a generic genetic predictor derived from an individual’s genome. This genetic predictor gij can be either an
allele count at a particular genetic locus (e.g., the independent variable of interest in a GWAS) or a genome-wide summary
measure such as a polygenic score. Thus, the causal effect of gij on yij is a direct genetic effect. Empirically observed values
of g1j and g2j are draws of random variables G1 and G2, respectively. G1 is distributed with mean µ1 and some non-zero
and finite variance σ2

1 , and G2 is distributed with mean µ2 and some non-zero and finite variance σ2
2 .

Let gj be the sum of this same genetic predictor derived from the mother in family j’s genome and the genetic predictor
derived from the father in family j’s genome. The causal effect of gj on yij is a genetic nurture effect.

Let eij be an unobserved measure of individual-level environmental influences on yij . Although unobserved, e1j and e2j
are draws of random variables E1 and E2, respectively. E1 is distributed with mean π1 and non-zero and finite variance ω2

1 ,
and E2 is distributed with mean π2 and non-zero and finite variance ω2

2 .
Finally, let ej be an unobserved measure of family-level environmental influences on yij .

yij : Outcome (i.e. phenotype) of individual i in family j
gij : Genetic predictor of individual i in family j
gj : Genetic predictor of mother in family j + genetic predictor of father in family j
eij : Individual-level environmental effects for individual i in family j
ej : Family-level environmental effects for family j

We allow our outcome of interest yij be a function of linear direct genetic effects, linear genetic nurture effects, and flexible
individual-level and family-level environmental effects. This underlying causal model is displayed in in Equation 3.1.

yij = α+ βgij + δgj + eij + ej (3.1)

α: Intercept
β: Magnitude of direct genetic effects
δ: Magnitude of genetic nurture effects

3.2 Within Family Models

Fixed effects models that compare genetic differences in siblings to phenotypic differences in siblings have a common approach
for the identification of direct genetic effects. The fixed effects approach involves fitting a linear regression with a unique
intercept for each j, as a displayed in Equation 3.2.

yij = τ̂j + β̂FEgij + ε̂∗ij (3.2)

β̂FE: Estimated direct genetic effect from fixed effects model

The fixed effects model displayed in Equation 3.2 can be identically expressed by demeaning the dependent and indepen-
dent variables using the within transformation, as shown in Equation 3.3.

yij − ȳj = β̂FE(gij − ḡj) + ε̂∗ij (3.3)

Because there are exactly two individuals i in each family j (i.e. T = 2), the fixed effects model from Equation 3.3
is equivalent to the first differences model displayed in Equation 3.4. The first differences model involves fitting a linear
regression of y1j − y2j , the difference in outcomes between siblings, on g1j − g2j , the differences in genetic predictors between
siblings.

y1j − y2j = β̂FE(g1j − g2j) + ε̂∗ij (3.4)

In this paper, we introduce the phenotype differences model. The phenotype differences model, shown in Equation 3.5,
involves fitting a linear regression of y1j−y2j , the differences in outcomes between siblings, on g1j(1−ρ), the genetic predictor
of a single sibling multiplied by one minus the correlation of genetic predictors within families.

y1j − y2j = α̂+ β̂PD

(
g1j(1− ρG1,G2)

)
+ ε̂ij (3.5)
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Where ρG1,G2 =
cov(G1, G2)

var(G1)
1
2G2)

1
2

β̂PD: Estimated direct genetic effect from phenotype differences model
ρG1,G2: Correlation between the genetic predictor of individual 1 and individual 2 in each family j

When individual 2 is randomly selected from of all individual 1’s brothers and sisters and mating is random, genetic
recombination causes siblings to share on average half of their genomes. In such a case, ρG1,G2 = 1

2 and the phenotype
differences model specializes to Equation 3.6.

y1j − y2j = α̂+ β̂PD g1j
2

+ ε̂ij (3.6)

In cases where ρG1,G2 6= 1
2 , an estimate of ρG1,G2 can be obtained using a representative sub-sample fully genotyped of

siblings pairs. Estimates of ρG1,G2 may also be obtained using a representative sample of parent-child pairs. Alternatively,
one could infer ρG1,G2 using population-level estimates of genetic assortative mating.

3.3 Assumptions of Phenotype Differences

We show that the phenotype differences model provides unbiased and consistent estimates of β, the true causal effect of
gij on yij , when two assumptions hold. The first assumption, which is also required for fixed effects models, is the random
assignment of genotype within families. That is, we must assume that an individual’s genetic predictor is uncorrelated
with his or her individual-level environment and the individual-level environment of his or her siblings. This assumption is
displayed mathematically in Equation 3.7.

cov(G1, E1) = cov(G1, E2) = cov(G2, E1) = cov(G2, E2) = 0 (3.7)

The second assumption of phenotype differences is that the population variance of individual 1’s genetic predictor is the
equal to the population variance of individual 2’s genetic predictor. That is, unobserved genetic predictor has the same
variance as the observed genetic predictor (which also implies that the unobserved genetic predictor also have the same
standard deviation of the observed genetic predictor). This assumption is displayed mathematically in Equation 3.8.

σ2
1 = σ2

2 and, therefore, σ1 = σ2 (3.8)
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3.4 Unbiasedness of Phenotype Differences

In this section, we show that the phenotype differences method obtains unbiased estimates of the causal effect of gij on yij . However, as is common in the empirical
literature, we first standardize g1j within-sample:

g̃1j =
g1j − ḡ1
var(g1j)

1
2

We therefore aim to show that phenotype differences is an unbiased estimator of the standardized effect; that is, the expected value of β̂PD is equal to βσ1. Note

that, by construction, var(g̃1j) = 1 and ρG̃1,G1 = 1⇒ ρG̃1,G2 = ρG1,G2.

Expected Value of β̂PD

β̂PD =

cov

(
g̃1j(1− ρG1,G2), y1j − y2j

)
var

(
g̃1j(1− ρG1,G2)

) OLS coefficient formula

β̂PD =
(1− ρG1,G2)cov(g̃1j , y1j − y2j)

var

(
g̃1j(1− ρG1,G2)

) cov(yA, zB) = (yz)cov(A,B)

β̂PD =
(1− ρG1,G2)cov(g̃1j , y1j − y2j)

(1− ρG1,G2)2var(g̃1j)
var(zA) = z2var(A)

β̂PD =
(1− ρG1,G2)cov(g̃1j , y1j − y2j)

(1− ρG1,G2)2
var(g̃1j) = 1

β̂PD =
1

1− ρG1,G2
× cov(g̃1j , y1j − y2j) Simplify

β̂PD =
1

1− ρG1,G2
× cov

(
g̃1j , β(g1j − g2j) + (e1j − e2j)

)
Substitute in Equation ??

β̂PD =
1

1− ρG1,G2
×

(
cov

(
g̃1j , β(g1j − g2j)

)
+ cov(g̃1j , e1j − e2j)

)
cov(A,B + C) = cov(A,B) + cov(A,C)

β̂PD =
1

1− ρG1,G2
×
(
cov

(
g̃1j , β(g1j − g2j)

)
+ cov(g̃1j , e1j)− cov(g̃1j , e2j)

)
cov(A,B − C) = cov(A,B)− cov(A,C)

β̂PD =
1

1− ρG1,G2
×
(
βcov

(
g̃1j , (g1j − g2j)

)
+ cov(g̃1j , e1j)− cov(g̃1j , e2j)

)
cov(yA, zB) = (yz)cov(A,B)

β̂PD =
1

1− ρG1,G2
×

(
β
(
cov(g̃1j , g1j)− cov(g̃1j , g2j)

)
+ cov(g̃1j , e1j)− cov(g̃1j , e2j)

)
cov(A,B − C) = cov(A,B)− cov(A,C)

E[β̂PD] = E
[

1

1− ρG1,G2
×

(
β
(
cov(g̃1j , g1j)− cov(g̃1j , g2j)

)
+ cov(g̃1j , e1j)− cov(g̃1j , e2j)

)]
Evaluate Expectation

E[β̂PD] =
1

1− ρG1,G2
E
[
β

(
cov(g̃1j , g1j)− cov(g̃1j , g2j)

)
+ cov(g̃1j , e1j)− cov(g̃1j , e2j)

]
E[zA] = z E[A]
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E[β̂PD] =
1

1− ρG1,G2
×
(
E
[
β

(
cov(g̃1j, g1j)− cov(g̃1j , g2j)

)]
+ E

[
cov(g̃1j , e1j)

]
− E

[
cov(g̃1j , e2j)

])
E[A+B] = E[A] + E[B]

E[β̂PD] =
1

1− ρG1,G2
×

(
E
[
β

(
cov(g̃1j , g1j)− cov(g̃1j , g2j)

)]
+ E

[
ρg̃1j ,e1jvar(g̃1j)

1
2 var(e1j)

1
2

]
− E

[
ρg̃1j ,e2jvar(g̃1j)

1
2 var(e2j)

1
2 )

])
cov(A,B) = ρA,Bvar(A)

1
2 var(B)

1
2

E[β̂PD] =
1

1− ρG1,G2
×

(
E
[
β

(
cov(g̃1j , g1j)− cov(g̃1j , g2j)

)]
+ E

[
ρg̃1j ,e1jvar(e1j)

1
2

]
− E

[
ρg̃1j ,e2jvar(e2j)

1
2 )

])
var(g̃1j) = 1

E[β̂PD] =
1

1− ρG1,G2
×

(
E
[
β

(
cov(g̃1j , g1j)− cov(g̃1j , g2j)

)]
+ E[ρg̃1j ,e1j ]E

[
var(e1j)

1
2 )

]
− E[ρg̃1j ,e2j ]E

[
var(e2j)

1
2 )

])
A ⊥⊥ B ⇒ E[AB] = E[A]E[B]

E[β̂PD] =
1

1− ρG1,G2
×
(
E
[
β

(
cov(g̃1j , g1j)− cov(g̃1j , g2j)

)]
+ ρG̃1,E1 E

[
var(e1j)

1
2 )

]
− ρG̃1,E2 E

[
var(e2j)

1
2 )

])
Evaluate Expectation

E[β̂PD] =
1

1− ρG1,G2
×

(
E
[
β

(
cov(g̃1j , g1j)− cov(g̃1j , g2j)

)]
+ 0E

[
var(e1j)

1
2 )

]
− 0E

[
var(e2j)

1
2 )

])
Substitute in Equation 3.7

E[β̂PD] =
1

1− ρG1,G2
× E

[
β

(
cov(g̃1j , g1j)− cov(g̃1j , g2j)

)]
Simplify

E[β̂PD] =
β

1− ρG1,G2
× E

[
cov(g̃1j , g1j)− cov(g̃1j , g2j)

]
E[zA] = z E[A]

E[β̂PD] =
β

1− ρG1,G2
×

(
E
[
cov(g̃1j , g1j)

]
− E

[
cov(g̃1j , g2j)

])
E[A+B] = E[A] + E[B]

E[β̂PD] =
β

1− ρG1,G2
×

(
E
[
ρg̃1j ,g1jvar(g̃1j)

1
2 var(g1j)

1
2

]
− E

[
ρg̃1j ,g2jvar(g̃1j)

1
2 var(g2j)

1
2

])
cov(A,B) = ρA,Bvar(A)

1
2 var(B)

1
2

E[β̂PD] =
β

1− ρG1,G2
×
(
E
[
ρg̃1j ,g1jvar(g1j)

1
2

]
− E

[
ρg̃1j ,g2jvar(g2j)

1
2

])
var(g̃1j) = 1

E[β̂PD] =
β

1− ρG1,G2
×
(
E[ρg̃1j ,g1j ]E

[
var(g1j)

1
2

]
− E[ρg̃1j ,g2j ]E

[
var(g2j)

1
2

])
A ⊥⊥ B ⇒ E[AB] = E[A]E[B]

E[β̂PD] =
β

1− ρG1,G2
×

(
ρG̃1,G1 E

[
var(g1j)

1
2

]
− ρG̃1,G2 E

[
var(g2j)

1
2

])
Evaluate Expectation

E[β̂PD] =
β

1− ρG1,G2
×

(
E
[
var(g1j)

1
2

]
− ρG̃1,G2 E

[
var(g2j)

1
2

])
Simplify

E[β̂PD] =
β

1− ρG1,G2
× (σ1 − ρG1,G2σ2) Evaluate Expectation

E[β̂PD] =
β

1− ρG1,G2
× (σ1 − ρG1,G2σ1) Substitute in Assumption 3.8

E[β̂PD] =
β

1− ρG1,G2
× (1− ρG1,G2)σ1 Simplify

E[β̂PD] = βσ1 Simplify
(3.9)
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3.5 Consistency of Phenotype Differences

In this section, we show that the phenotype differences method is a consistent estimator of the causal effect of gij on yij . That is, the probability limit of β̂PD as N
goes to infinity is equal to β, the true causal effect.

Asymptotic Expected Value of βPD

p lim
N→∞

E[β̂PD] = p lim
N→∞

E[β̂PD] Identity

p lim
N→∞

E[β̂PD] = p lim
N→∞

β Substitute in Equation 3.9

p lim
N→∞

E[β̂PD] = β p lim
N→∞

z = z (3.10)

Variance of β̂PD

var(β̂PD) =
1

N −K − 1
· var(ε̂ij)

var

(
(1− ρ)g1j

) Bivariate OLS Coefficient Variance Formula

var(β̂PD) =
1

N − 1− 1
· var(ε̂ij)

(1− ρ)2var(g1j)
Substitute in K=1 and var(zA) = z2var(A)

var(β̂PD) =
1

N − 2
· var(ε̂ij)

(1− ρ)2var(g1j)
Simplify (3.11)

Asymptotic Expected Value of Variance of β̂PD

p lim
N→∞

E[var(β̂PD)] = p lim
N→∞

E[var(β̂PD)] Identity

p lim
N→∞

E[var(β̂PD)] = p lim
N→∞

E
[

1

N − 2
· var(ε̂ij)

(1− ρ)2var(g1j)

]
Substitute in Equation 3.11

p lim
N→∞

[var(β̂PD)] = p lim
N→∞

1

N − 2
E
[

var(ε̂ij)

(1− ρ)2var(g1j)

]
E[zA] = z E[A]

p lim
N→∞

[var(β̂PD)] = p lim
N→∞

1

N − 2

E[var(ε̂ij)]

(1− ρ)2 E[var(g1j)]
A ⊥⊥ B ⇒ E[

A

B
] =

E[A]

E[B]

p lim
N→∞

[var(β̂PD)] =
1

∞− 2

E[var(ε̂ij)]

(1− ρ)2 E[var(g1j)]
Evaluate p lim

p lim
N→∞

E[var(β̂PD)] = 0 E[var(ε̂ij)] <∞,E[var(g1j)] > 0 (3.12)
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β̂PD Converges in Quadratic Mean

From above Equations 3.10 and 3.12, we have that p lim
N→∞

E[β̂PD)] = β and p lim
N→∞

E[var(β̂PD)] = 0. Thus, β̂PD converges in quadratic mean to β. This entails that

the probability limit of β̂PD is β and that β̂PD is a consistent estimator of β.

p lim
N→∞

E[β̂PD] = β, p lim
N→∞

E[var(β̂PD)] = 0⇒ p lim
N→∞

β̂PD = β (3.13)

3.6 Comparative Precision of Phenotype Differences & Fixed Effects

In this section, we derive the comparative precision of phenotype differences and fixed effects in large samples.

Additional Assumptions

To simplify exposition, for this section we further assume:

ρG1,G2 = 0.5 (3.14)

Unbiasedness & Consistency of βFE

It has previously been shown that strict exogeneity of the independent variable within group implies that the fixed effects estimator is unbiased and consistent (for
example, see Chapter 10 of Wooldridge 2010, Econometric Analysis of Cross Section and Panel Data). In our case, given the random assignment of gij within families,
these past results hold.

E[β̂FE] = β (3.15)

p lim
N→∞

β̂FE = β (3.16)

Variance of β̂FE

var(β̂FE) =
1

N(T − 1)−K
·

var(ε̂∗ij)

var(g1j − g2j)
Fixed Effects Coefficient Variance Formula

var(β̂FE) =
1

N(2− 1)− 1
·

var(ε̂∗ij)

var(g1j − g2j)
Substitute in T=2 and K=1

var(β̂FE) =
1

N − 1
·

var(ε̂∗ij)

var(g1j − g2j)
Simplify

var(β̂FE) =
1

N − 1
·

var(ε̂∗ij)

var(g1j) + var(g2j)− 2cov(g1j , g1j)
var(A−B) = var(A) + var(B)− 2cov(A,B)

var(β̂FE) =
1

N − 1
·

var(ε̂∗ij)

var(g1j) + var(g2j)− (2)(.5)var(g1j)
1
2 var(g2j)

1
2

cov(A,B) = ρA,Bvar(A)
1
2 var(B)

1
2

var(β̂FE) =
1

N − 1
·

var(ε̂∗ij)

var(g1j) + var(g2j)− var(g1j)
1
2 var(g2j)

1
2

Simplify (3.17)
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Phenotype Differences Residual

y1j − y2j = α̂+ β̂PD

(
g1j(1− ρG1,G2)

)
+ ε̂ij Equation 3.5

β(g1j − g2j) + (e1j − e2j) = α̂+ β̂PD

(
g1j(1− ρG1,G2)

)
+ ε̂ij Substitute in Equation ??

ε̂ij = β(g1j − g2j)− β̂PD

(
g1j(1− ρG1,G2)

)
+ (e1j − e2j)− α̂ Rearrange to isolate ε̂ij

ε̂ij = β(g1j − g2j)− β̂PD g1j
2

+ (e1j − e2j)− α̂ Substitute in Assumption 3.14

ε̂ij = βg1j − βg2j − β̂PD g1j
2

+ (e1j − e2j)− α̂ Distribute β

ε̂ij = (β − β̂PD)(
g1j
2

) + β(
g1j
2
− g2j) + (e1j − e2j)− α̂ Undistribute (β − β̂PD) & β (3.18)

Fixed Effects Residual

y1j − y2j = β̂FE(g1j − g2j) + ε̂∗ij Equation 3.4

β(g1j − g2j) + (e1j − e2j) = β̂FE(g1j − g2j) + ε̂∗ij Substitute in Equation 3.1

ε̂∗ij = (β − β̂FE)(g1j − g2j) + (e1j − e2j) Rearrange to isolate ε̂ij (3.19)

Variance of ε̂ij

var(ε̂ij) = var(ε̂ij) Identity

var(ε̂ij) = var

(
(β − β̂PD)(

g1j
2

) + β(
g1j
2
− g2j) + (e1j − e2j)

)
Substitute in 3.18

var(ε̂ij) = var

(
(β − β̂PD)(

g1j
2

) + β(
g1j
2
− g2j)

)
+ var(e1j − e2j) cov(A,B) = 0⇒ var(A+B) = var(A) + var(B)

var(ε̂ij) = (β − β̂PD)2var(
g1j
2

) + β(β − β̂PD)cov(g1j ,
g1j
2
− g2j) + β2var(

g1j
2
− g2j) + var(e1j) + var(e2j) cov(A,B) = 0⇒ var(A−B) = var(A) + var(B)

var(ε̂ij) = var

(
(β − β̂PD)(

g1j
2

)

)
+ var

(
β(
g1j
2
− g2j)

)
+ 2cov

(
(β − β̂PD)(

g1j
2

), β(
g1j
2
− g2j)

)
+ var(e1j) + var(e2j) var(A+B) = var(A) + var(B) + 2cov(A,B)

var(ε̂ij) = var

(
(β − β̂PD)(

g1j
2

)

)
+ var

(
β(
g1j
2
− g2j)

)
+ β(β − β̂PD)cov(g1j ,

g1j
2
− g2j) + var(e1j) + var(e2j) cov(yA, zB) = (yz)cov(A,B)

var(ε̂ij) = (β − β̂PD)2var(
g1j
2

) + β2var(
g1j
2
− g2j) + β(β − β̂PD)cov(g1j ,

g1j
2
− g2j) + var(e1j) + var(e2j) var(zA) = z2var(A)

var(ε̂ij) = (β − β̂PD)2var(
g1j
2

) + β(β − β̂PD)cov(g1j ,
g1j
2
− g2j) + β2var(

g1j
2
− g2j) + var(e1j) + var(e2j) Rearrange

var(ε̂ij) = (β − β̂PD)

(
(β − β̂PD)var(

g1j
2

) + βcov(g1j ,
g1j
2
− g2j)

)
+ β2var(

g1j
2
− g2j) + var(e1j) + var(e2j) Undistribute (β − β̂PD)

(3.20)
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Variance of ε̂∗ij

var(ε̂∗ij) = var(ε̂∗ij) Identity

var(ε̂∗ij) = var

(
(β − β̂FE)(g1j − g2j) + (ε1j − ε2j)

)
Substitute in 3.19

var(ε̂∗ij) = var

(
(β − β̂FE)(g1j − g2j)

)
+ var(ε1j − ε2j) cov(A,B) = 2⇒ var(A+B) = var(A) + var(B)

var(ε̂∗ij) = var

(
(β − β̂FE)(g1j − g2j)

)
+ var(ε1j) + var(ε2j) cov(A,B) = 2⇒ var(A−B) = var(A) + var(B)

var(ε̂∗ij) = (β − β̂FE)2var(g1j − g2j) + var(ε1j) + var(ε2j) var(zA) = z2var(A) (3.21)

Ratio of Variances

var(β̂FE)

var(β̂PD)
=
var(β̂FE)

var(β̂PD)
Identity

var(β̂FE)

var(β̂PD)
=

(
1

N − 1
·

var(ε̂∗ij)

var(g1j) + var(g2j)− var(g1j)
1
2 var(g2j)

1
2

)(
N − 2

1
·

( 1
2 )2var(g1j)

var(ε̂ij)

)
Substitute in Equations 3.11 and 3.17, recall ρG1,G2 = 0.5

var(β̂FE)

var(β̂PD)
=
N − 2

N − 1
·
var(ε̂∗ij)

var(ε̂ij)
·

1
4var(g1j)

var(g1j) + var(g2j)− var(g1j)
1
2 var(g2j)

1
2

Rearrange (3.22)16



Asymptotic Ratio of Variances

p lim
N→∞

var(β̂FE)

var(β̂PD)
= p lim

N→∞

var(β̂FE)

var(β̂PD)
Identity

p lim
N→∞

var(β̂FE)

var(β̂PD)
= p lim

N→∞

(
N − 2

N − 1
·
var(ε̂∗ij)

var(ε̂ij)
·

1
4var(g1j)

var(g1j) + var(g2j)− var(g1j)
1
2 var(g2j)

1
2

)
Substitute in Equations 3.22

p lim
N→∞

var(β̂FE)

var(β̂PD)
= p lim

N→∞

(
N − 2

N − 1

)
p lim
N→∞

(
var(ε̂∗ij)

var(ε̂ij)
·

1
4var(g1j)

var(g1j) + var(g2j)− var(g1j)
1
2 var(g2j)

1
2

)
p lim
n→∞

AnBn = p lim
n→∞

An · p lim
n→∞

Bn

var(β̂FE)

var(β̂PD)
=
∞− 2

∞− 1
p lim
N→∞

(
var(ε̂∗ij)

var(ε̂ij)
·

1
4var(g1j)

var(g1j) + var(g2j)− var(g1j)
1
2 var(g2j)

1
2

)
Evaluate p lim

p lim
N→∞

var(β̂FE)

var(β̂PD)
= p lim

N→∞

(
var(ε̂∗ij)

var(ε̂ij)
·

1
4var(g1j)

var(g1j) + var(g2j)− var(g1j)
1
2 var(g2j)

1
2

)
Simplify

p lim
N→∞

var(β̂FE)

var(β̂PD)
= p lim

N→∞

(
var(ε̂∗ij)

var(ε̂ij)

)
p lim
N→∞

( 1
4var(g1j)

var(g1j) + var(g2j)− var(g1j)
1
2 var(g2j)

1
2

)
p lim
n→∞

AnBn = p lim
n→∞

An · p lim
n→∞

Bn

p lim
N→∞

var(β̂FE)

var(β̂PD)
= p lim

N→∞

(
var(ε̂∗ij)

var(ε̂ij)

)( 1
4var(G1)

var(G1) + var(G2)− var(G2)
1
2 var(G2)

1
2

)
Evaluate p lim

p lim
N→∞

var(β̂FE)

var(β̂PD)
= p lim

N→∞

(
var(ε̂∗ij)

var(ε̂ij)

)( 1
4σ

2

σ2 + σ2 − σ2

)
Change of Notation

p lim
N→∞

var(β̂FE)

var(β̂PD)
= p lim

N→∞

(
var(ε̂∗ij)

var(ε̂ij)

)(
σ2

4σ2

)
Simplify

p lim
N→∞

var(β̂FE)

var(β̂PD)
= p lim

N→∞

1

4

var(ε̂∗ij)

var(ε̂ij)
Simplify

p lim
N→∞

var(β̂FE)

var(β̂PD)
=

1

4
p lim
N→∞

(β − β̂FE)2var(g1j − g2j) + var(e1j) + var(e2j)

(β − β̂PD)

(
(β − β̂PD)var(

g1j
2 ) + βcov(g1j ,

g1j
2 − g2j)

)
+ β2var(

g1j
2 − g2j) + var(e1j) + var(e2j)

Substitute Equations 3.20 & 3.21

p lim
N→∞

var(β̂FE)

var(β̂PD)
=

p lim
N→∞

(β − β̂FE)2var(g1j − g2j) + p lim
N→∞

(
var(e1j) + var(e2j)

)
4

[
p lim
N→∞

(β − β̂PD)

(
(β − β̂PD)var(

g1j
2 ) + βcov(g1j ,

g1j
2 − g2j)

)
+ p lim

N→∞

(
β2var(

g1j
2 − g2j) + var(e1j) + var(e2j)

)] p lim
n→∞

An
Bn

=

p lim
n→∞

An

p lim
n→∞

Bn

p lim
N→∞

var(β̂FE)

var(β̂PD)
=

(β − β)2var(G1−G2) + p lim
N→∞

(
var(e1j) + var(e2j)

)
4(β − β)

(
(β − β)var(G1

2 ) + βcov(G1, G1
2 −G2)

)
+ p lim

N→∞
4 ·

(
β2var(

g1j
2 − g2j) + var(e1j) + var(e2j)

) Evaluate p lim

p lim
N→∞

var(β̂FE)

var(β̂PD)
=

p lim
N→∞

(
var(e1j) + var(e2j)

)
p lim
N→∞

4 ·
(
β2var(

g1j
2 − g2j) + var(e1j) + var(e2j)

) Simplify
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p lim
N→∞

var(β̂FE)

var(β̂PD)
=

var(E1) + var(E2)

4

(
β2var(G1

2 −G2) + var(E1) + var(E2)

) Evaluate p lim

p lim
N→∞

var(β̂FE)

var(β̂PD)
=

var(E1) + var(E2)

4β2

(
var(G1

2 ) + var(G2)− 2cov(G1
2 , G2)

)
+ 4var(E1) + 4var(E2)

var(A−B) = var(B) + var(B)− 2cov(A,B)

p lim
N→∞

var(β̂FE)

var(β̂PD)
=

var(E1) + var(E2)

4β2

(
var(G1

2 ) + var(G2)− cov(G1, G2)

)
+ 4var(E1) + 4var(E2)

cov(yA, zB) = (yz)cov(A,B)

p lim
N→∞

var(β̂FE)

var(β̂PD)
=

var(E1) + var(E2)

β2

(
var(G1) + 4var(G2)− 4cov(G1, G2)

)
+ 4var(E1) + 4var(E2)

var(zA) = z2var(A)

p lim
N→∞

var(β̂FE)

var(β̂PD)
=

var(E1) + var(E2)

β2

(
var(G1) + 4var(G2)− 4ρG1,G2var(G1)

1
2 var(G2)

1
2

)
+ 4var(E1) + 4var(E2)

cov(A,B) = ρA,Bvar(A)
1
2 var(B)

1
2

p lim
N→∞

var(β̂FE)

var(β̂PD)
=

ω2 + ω2

β2(σ2 + 4σ2 − 2σ2) + 4ω2 + 4ω2
Change of Notation

p lim
N→∞

var(β̂FE)

var(β̂PD)
=

2ω2

3β2σ2 + 8ω2
Simplify (3.23)

Variance of yij Within Families

var(y1j − y2j) = var(y1j − y2j) Identity

var(y1j − y2j) = var

(
β(g1j − g2j) + (e1j − e2j)

)
Substitute in Equation 3.4

var(y1j − y2j) = var

(
β(g1j − g2j)

)
+ var(e1j − e2j) cov(A,B) = 0⇒ var(A+B) = var(A) + var(B)

var(y1j − y2j) = β2var(g1j − g2j) + var(e1j − e2j) var(zA) = z2var(A)

var(y1j − y2j) = β2var(g1j − g2j) + var(e1j) + var(e2j) cov(A,B) = 0⇒ var(A−B) = var(A) + var(B)

var(y1j − y2j) = β2

(
var(g1j) + var(g2j)− 2cov(g1j , g2j)

)
+ var(e1j) + var(e2j) var(A−B) = var(A) + var(B)− 2cov(A,B)

(3.24)
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Expected Value of Variance of yij Within Families

E[var(y1j − y2j)] = E[var(y1j − y2j)] Identity

E[var(y1j − y2j)] = E
[
β2

(
var(g1j) + var(g2j)− 2cov(g1j , g2j)

)
+ var(e1j) + var(e2j)

]
Take Expectation

E[var(y1j − y2j)] = E
[
β2

(
var(g1j) + var(g2j)− 2cov(g1j , g2j)

)]
+ E[var(e1j) + var(e2j)] E[A+B] = E[A] + E[B]

E[var(y1j − y2j)] = β2

(
var(G1) + var(G2)− 2cov(G1, G2)

)
+ var(E1) + var(E2) Evaluate Expectation

E[var(y1j − y2j)] = β2

(
var(G1) + var(G2)− 2ρG1,G2var(G1)

1
2 var(G2)

1
2

)
+ var(E1) + var(E2) cov(A,B) = ρA,Bvar(A)

1
2 var(B)

1
2

E[var(y1j − y2j)] = β2

(
σ2 + σ2 − (2)(.5)σ2

)
+ ω2 + ω2 Change of Notation

E[var(y1j − y2j)] = β2σ2 + 2ω2 Simplify (3.25)

Within Family Explanatory Power of gij

Let us call the fraction of within family variation in the outcome yij that is explained by gij , our genetic predictor, φ. The within R2 of the fixed effects model
displayed in Equation 3.3 provides an estimate of φ.

φ =
β2σ2

β2σ2 + 2ω2
(3.26)

Isolating β2σ2

φ =
β2σ2

β2σ2 + 2ω2
Equation 3.26

β2σ2φ+ 2ω2φ = β2σ2 Rearrange

2ω2φ = β2σ2 − β2σ2φ Collect σ2 terms

2ω2φ = (1− φ)β2σ2 Factor out φ

2ω2φ

(1− φ)
= β2σ2 Rearrange (3.27)
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Ratio of Variances as a Function of φ

We can now express the asymptotic variance ratio of the fixed effects and phenotype differences estimators in terms of φ.

p lim
N→∞

var(β̂FE)

var(β̂PD)
=

2ω2

3β2σ2 + 8ω2
Equation 3.23

p lim
N→∞

var(β̂FE)

var(β̂PD)
=

2ω2

3 2ω2φ
(1−φ) + 8ω2

Substitute in Equation 3.27

p lim
N→∞

var(β̂FE)

var(β̂PD)
=

1

3 φ
(1−φ) + 4

Simplify

p lim
N→∞

var(β̂FE)

var(β̂PD)
=

1− φ
3φ+ 4− 4φ

Simplify

p lim
N→∞

var(β̂FE)

var(β̂PD)
=

1− φ
4− φ

Simplify (3.28)
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3.7 Instrumental Variables with Phenotype Differences

Suppose that we are interested in using the following family fixed effects model to estimate the causal relationship between two non-genetic individual-level variables:

yij = αj + βxij + ε′ij

Here, xij and yij are both phenotypic variables that we observe for exactly 2 siblings i in each family j and αj is term representing family fixed effects. Because
T = 2, the fixed effects equation above can be identically expressed using first differences:

y1j − y2j = β(x1j − x2j) + (ε′1j − ε′2j) (3.29)

However, if x1j − x2j is correlated with ε′1j − ε′2j , this approach would suffer from omitted variable bias. A potential solution is to use the genotype of one of
the siblings, g1j , as an instrument for x1j − x2j (the use of genetic characteristics as an instrumental variable is often referred to as Mendelian randomization). For
compactness, we define:

∆yj = y1j − y2j
∆xj = x1j − x2j
∆ε′j = ε′1j − ε′2j

This allows us to rewrite Equation 3.29 as follows:

∆yj = α+ β(∆xj) + ∆ε′j (3.30)

In order for g1j to be a valid instrument for ∆xj , it must meet two conditions:

1. Relevance: Cov(g1j ,∆xj) 6= 0

2. Exogeneity: Cov(g1j ,∆ε
′
j) = 0

If these conditions are met, we can use a modified form of the phenotype differences model that acts as the first stage in two-stage least-squares IV regression:

∆xj = α+ βPD
(

(1− ρG1,G2)g1j

)
+ εij

∆yj = βIV (∆x̃j) + ∆ε′j

Where ∆x̃j is the fitted value of ∆xj estimated from the first stage equation. In fact, because we are only interested in the fitted values, ∆x̃j , from the from the
first stage – that is, βPD is not of interest – we can simplify the estimating equation by simply omitting ρG1,G2 altogether:

∆xj = α+ βPDg1j + εij (3.31)

∆yj = βIV (∆x̃j) + ∆ε′j (3.32)
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